Versatile Synthesis of Dihydroquinolines and Quinoline Quinones Using Cyclobutenediones. Construction of the Pyridoacridine Ring System

Dawei Zhang, Isidro Llorente, ${ }^{1}$ and Lanny S. Liebeskind*
Sanford S. Atwood Chemistry Center, Emory University, 1515 Pierce Drive, Atlanta, Georgia, 30322

Received J anuary 6, 1997 ${ }^{\circledR}$

Abstract

1-BOC-2-lithio-1,4-dihydropyridines were condensed with 3,4-disubstituted cyclobutenediones to produce 1,2-adducts. Neat thermolysis under oxygen-free conditions produced substituted 1,4dihydroquinoline hydroquinones in which the tert-butoxy residue of the BOC group was displaced by a phenolic residue, generating an oxazolone ring that functioned to protect both rings of the dihydroquinoline hydroquinone from untimely oxidation. Oxidative aromatization with concomitant loss of the oxazolone ring was achieved using 2 equiv of o-chloranil in acetic acid and provided substituted quinoline quinones in good yields. By use of this strategy, a concise synthesis of the pyridoacridine ring system was achieved.

Introduction

Pyridoacridines are a family of marine alkaloids based on the 11 H -pyrido[4,3,2-mn]acridine skeleton (1) (Figure 1), ${ }^{2}$ many of which possess the "pyridoacridone" structure 2. These compounds often exhibit an array of biological activities and a particular chemical behavior that have attracted the interest of many natural product chemists and biochemists. Since 1983, when the structure of amphimedine, the first of these marine alkaloids was reported, ${ }^{3}$ many additional examples have been described, and a number of papers have appeared describing synthetic efforts toward and the total synthesis of pyridoacridine alkaloids. ${ }^{4-14}$

Building upon the well-established chemistry of cyclobutenediones 3, ${ }^{15-27}$ a direct synthetic entry to the

[^0]

1

2

amphimedine

Figure 1.
biologically-active pyridoacridone ring system is depicted in eq 1. Addition of a suitably protected 4-(2-anilinyl)-

2-lithiopyridine to a substituted cycl obutenedione would provide a 1,2-adduct that could be transformed into the pyridoacridone ring system 2 upon thermolysis, deprotection, and oxidation. However, a wide variety of 1,2adducts derived from cyclobutenediones and 2-lithiated pyridines or other 2-lithiated azaaromatics produced ring-fused pyridones, exclusively (eq 2), by attack of the

[^1]Table 1. Synthesis of 1,4-Disubstituted 1,4-Dihydropyridines

entry	RM	R	compd	condns ${ }^{\text {b }} \mathbf{~} \rightarrow \mathbf{5}$	compd	yield (\%)
1	NaBH_{4}	H	4a	A	$5 \mathrm{a}^{40}$	41
2	MeMgCla	Me	4b	B	5b ${ }^{28}$	87
3	nBuMgCla	nBu	4 C	B	$5 \mathrm{c}^{28}$	81
4	PhMgCla	Ph	4d	C	5d	85
5	2-MeOC6 $\mathrm{H}_{4} \mathrm{MgCl}{ }^{\text {a }}$	2-MeOC ${ }_{6} \mathrm{H}_{4}$	4 e	C	5 e	85
6	$\left(2-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{CuLi}$	$2-\mathrm{FC}_{6} \mathrm{H}_{4}$	4 f	C	$5 f$	86
7	[4-(allyl) $\left.\mathrm{NC}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{CuLi}$	4-(allyl) $2^{\left(\mathrm{NC}_{6} \mathrm{H}_{4}\right.}$	4 g	C	59	78

electron-rich nitrogen atom upon the ketene intermediate that is formed during thermolysis. ${ }^{19,23}$

In order to circumvent the undesired interaction between the nucleophilic nitrogen atom and the electrophilic central carbon atom of the ketene, a cyclobutene-dione-based route to quinolinequinones demands the use of a 2-lithiopyridine equivalent that lacks a nucleophilic nitrogen atom. N-BOC-protected 1,4-dihydropyridines are easily prepared and are readily lithiated at the 2-position and then functionalized with electrophiles. ${ }^{28,29}$ These represent appropriate synthetic equivalents of pyridines for the projected quinoline quinone synthesis. The BOC protecting group provides activation for the metalation step and attenuates the nucleophilicity of the nitrogen atom, thus preventing undesired attack on the ketene intermediate that is generated during the thermal ring opening of the cyclobutenone. N-Deprotection is easily effected, thereby allowing facile aromatization. Reported herein is an efficient strategy for the preparation of substituted dihydroquinolines and the medicinally important quinoline quinone ring system ${ }^{30-32}$ via the regioselective addition of 1-BOC-2-lithio-1,4-dihydropyridines to 3,4 -disubstituted cyclobutenediones. An application of this methodology to the synthesis of the pyridoacridine ring system is described.

Results and Discussion

The chemistry of dihydropyridines has been extensively studied. ${ }^{33,34}$ Among the various methods known for their preparation, the nucleophilic addition of organometallic reagents to pyridinium salts provides good yields and in some cases occurs with high regioselectivity. Therefore, the direct addition of organometallic reagents (Mg, Li, Sn) to 1-acylpyridinium salts usually produces

1,2-dihydropyridines. ${ }^{35-37}$ However, reaction of 1-acylpyridinium salts with lithium dialkyl- or diarylcuprates provides the isomeric 4-alkyl(aryl)-1,4-dihydropyridines. ${ }^{38}$ Comins reported an improved method for the preparation of 4-substituted 1-acyl-1,4-dihydropyridines via the regioselective addition of Grignard reagents to 1-acylpyridinium salts in the presence of catalytic amounts of Cul . ${ }^{39}$

A number of 4-substituted 1,4-dihydropyridines were prepared using both the addition of lithium diarylcuprates to 1-(phenoxycarbonyl)pyridinium chloride and the Comins ${ }^{28}$ procedure (Table 1). The resulting crude 1-(phenoxycarbonyl)-1,4-dihydropyridines were treated with potassium tert-butoxide and converted into the more robust N-BOC derivatives prior to α-metalation with alkyllithium bases. Using this protocol, the 4-alkyl-1-(tert-butoxycarbonyl)-1,4-dihydropyridines were prepared in very good yields as the only isolated regioisomers. Unexpectedly, however, when 1-(phenoxycarbonyl)-4-phenyl-1,4-dihydropyridine was treated with potassium tert-butoxide in THF at various temperatures, a mixture of the 1,2- and 1,4-regioisomers was obtained in which the 1,2-dihydropyridine predominated. Since 1,4-dihydropyridines are reported to be more stable than their 1,2-regioisomers (the latter isomerize to the former under basic conditions), ${ }^{40,41}$ it is presumed that π-electron delocalization with the 4-phenyl substituent increases the thermodynamic stability of the 1,2-isomer relative to the 1,4-isomer. This problem was solved by conducting the PhOCO tot-BuOCO exchange reaction in toluene at -78 ${ }^{\circ} \mathrm{C}$. Under these conditions, urethane exchange occurred to the exclusion of base-catalyzed double-bond isomerization, and the desired 4-aryl-1-(tert-butoxycarbonyl)-1,4-dihydropyridines were produced in good yields (Table

[^2]Table 2. Synthesis of 1,4-Dihydroquinoline Hydroquinones

5

entry	5	R^{1}	3	R^{2}	R^{3}	compd	yield (\%)
1	5a	H	3a	iPro	iPro	7 a	53
2	5a	H	3d	4-FC66 H_{4}	'Pro	7b	44
3	5b	Me	3 a	iPrO	iPrO	7c	55
4	5b	Me	3b	Et	Et	7d	65
5	5b	Me	3c	Me	iPrO	7 e	42
6	5b	Me	3d	$4-\mathrm{FC} 6 \mathrm{H}_{4}$	iPro	7f	74
7	5 C	nBu	3 a	iPrO	iPro	7g	65
8	5 C	nBu	3c	Me	iPro	7h	55
9	5d	Ph	3 3	iPro	iPro	7 i	60
10	5d	Ph	3c	Me	iPro	7 j	41
11	5	2-MeOC6 H_{4}	3a	iPro	iPro	7k	57
12	5	$2-\mathrm{FC}_{6} \mathrm{H}_{4}$	3a	iPro	${ }^{\text {i PrO }}$	71	53
13	5 g	4-(allyl) $\mathrm{NCC}_{6} \mathrm{H}_{4}$	3b	Et	Et	7 m	62

1, entries 4-7). In the preparation of 4-unsubstituted 1-(tert-butoxycarbonyl)-1,4-dihydropyridine, the basecatalyzed equilibration between the 1,2- and 1,4-regioisomers was employed to advantage. The mixture of 1,4and 1,2-dihydropyridines that is formed on reduction of 1-(phenoxycarbonyl)pyridinium chloride with sodium borohydride was equilibrated in the presence of potassium tert-butoxide in THF at room temperature and produced compound 5a in 41\% yield (Table 1, entry 1). ${ }^{40,42}$

Because most of the dihydropyridines investigated in this study were not stable upon standing, $\mathbf{5 a -} \mathbf{- g}$ were prepared immediately prior to use. Treatment of 4-substituted 1-(tert-butoxycarbonyl)-1,4-dihydropyridines 5 with sec-butyllithium in THF at $-42{ }^{\circ} \mathrm{C}$ generated the 2-lithio derivatives, which reacted with a variety of 3,4disubstituted 3-cyclobutenediones $\mathbf{3}$ at the most electrophilic carbonyl group to produce the 1,2-adducts, 6. The crude adducts 6 were degassed under vacuum and then heated neat at $160-165{ }^{\circ} \mathrm{C}$ for up to 60 min under an oxygen-free atmosphere to produce the highly-substituted 1,4-dihydroquinoline hydroquinones 7 in moderate to good yields (Table 2). Rigorous maintenance of oxygenfree conditions was essential during the thermolysis in order to prevent the formation of complex reaction mixtures. During this process the 4-hydroxyl substituent on the cyclobutenone ring displaced the tert-butoxy residue of the BOC group generating an oxazol one ring, which functioned to protect both rings of the dihydroquinoline hydroquinone from untimely oxidation. Results are summarized in Table 2.

Oxidative aromatization of the N -substituted 1,4dihydroquinoline hydroquinones 7 using 2 equiv of ochloranil in acetic acid ${ }^{28}$ proceeded efficiently with con-

[^3]Table 3. Oxidation of 1,4-Dihydroquinoline Hydroquinones to Quinoline Quinones

			2 equiv		 8	
entry	7	R^{1}	R^{2}	R^{3}	compd	yield (\%)
1	7c	Me	'Pro	${ }^{\text {i Pro }}$	8c	55
2	7e	Me	Me	iPro	8 e	47
3	7 g	nBu	iPro	iPro	8 g	93
4	7h	nBu	Me	'Pro	8h	73
5	7 i	Ph	iPro	iPro	$8 i$	62
6	7 j	Ph	Me	iPro	$8{ }^{\text {j }}$	82
7	7k	$2-\mathrm{MeOC} 6 \mathrm{H}_{4}$	iPro	iPro	8k	77
8	71	$2-\mathrm{FC}_{6} \mathrm{H}_{4}$	iPro	iPro	81	82

comitant loss of the oxazolone ring and provided the substituted quinoline quinones 8 in good yields (Table 3).

Construction of the Pyridoacridine Ring. Almost all the members of pyridoacridine family of marine alkaloids are cytotoxic, and some exhibit specific properties such as inhibition of topoisomerase II, ${ }^{43}$ anti-HIV activity, ${ }^{44} \mathrm{Ca}^{2+}$ release activity, ${ }^{45}$ metal-chelating properties, ${ }^{46}$ or intercalation into DNA. ${ }^{46}$ Different approaches to the synthesis of these polycyclic alkaloids have been reported in the last few years, ${ }^{4-8}$ and the efforts toward the synthesis of their polycyclic skeletons and related pyridoacridines are considerable. ${ }^{9-14}$ Because of the importance that pyridoacridines have acquired since their discovery, a general synthetic route to pyridoacridines would be of great interest and potential utility in medicinal chemistry.

A concise synthesis of the pyridoacridine ring system that is based on the quinoline quinone synthesis described above is depicted in Scheme 1. The key tactical issue was selection of an appropriate aniline nitrogenprotecting group that would survive exposure to the strong nucleophiles and bases (RMgX, RLi) required for formation of the 4 -substituted 1,4-dihydropyridine and its subsequent metalation. The 2,5-dimethylpyrrolegroup fulfilled this role. ${ }^{47}$

Condensation of 2-bromoaniline with 2,5-hexanedione in the presence of a catalytic amount of acetic acid produced N -(2-bromophenyl)-2,5-dimethylpyrrole (9) in quantitative yield. Copper-mediated addition of the Grignard reagent derived from 9 to $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NCO}_{2} \mathrm{Ph}^{+} \mathrm{Cl}^{-}$ provided the protected 4-(2-anilinyl)-1,4-dihydropyridine 10, which was treated with 2 equiv of potassium tertbutoxide in toluene at $-78{ }^{\circ} \mathrm{C}$ to produce the protected 4-(2-anilinyl)-1-(tert-butoxycarbonyl)-1,4-dihydropyridine 11 as the only regioisomer in 86\% overall yield. Lithiation of dihydropyridine $\mathbf{1 1}$ in the presence of 2 equiv of sec-butyllithium at $-78^{\circ} \mathrm{C}$ over 5 h followed by condensation with 3,4-diisopropoxy-3-cyclobutenedione (3a) at $-78{ }^{\circ} \mathrm{C}$ directly afforded the 1,2-adduct as the

[^4]
Scheme 1a

a Key: (i) Mg, THF, reflux; (ii) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NCO}_{2} \mathrm{Ph}^{+} \mathrm{Cl}^{-}, 5 \% \mathrm{CuI},-23$
 $-78^{\circ} \mathrm{C}$; (vi) heat; (vii) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{NBS}, \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$; (viii) ${ }^{\text {tBuOOH}, \mathrm{KOH}, ~ E t O H . ~}$
oxazol one 12. The crude reaction product was degassed under vacuum and heated neat at $160-165^{\circ} \mathrm{C}$ for 45 min under oxygen-free conditions to produce dihydroquinoline hydroquinone $\mathbf{1 3}$ in good yield (66% overall from 11).

Primary amines have been generated from N -substituted 2,5-dimethylpyrroles by treatment with hydroxylamine hydrochloride under pH -dependent conditions ($\mathrm{Et}_{3} \mathrm{~N}, \mathrm{i}$-PrOH/water). ${ }^{48}$ However, attempts to deprotect the anilino nitrogen of $\mathbf{1 3}$ under these and related conditions resulted in recovery of unreacted pyrrole or complex reaction mixtures. On the basis of the assumption that hydrolysis of the 2,5-dimethylpyrrole ring hydrolysis might be facilitated through bromonium ion formation, the hydroxylamine hydrochloride deprotection procedure was attempted in the presence of N -bromosuccinimide as a co-reagent. Using this protocol (20 equiv of $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, 10$ equiv of $\mathrm{Et}_{3} \mathrm{~N}, 2$ equiv of $\mathrm{NBS}, \mathrm{EtOH} /$ water), removal of the 2,5 -dimethylpyrrole ring of $\mathbf{1 3}$ could be achieved in 57% yield. Starting material (30\%) was recovered, but the yield of the desired product, 14, could not be increased through the use of larger amounts of NBS and/or longer reaction times.

Oxidation of the dihydroquinoline hydroquinone 14 and condensation to the pyridoacridone did not take place using o-chloranil in acetic acid or other sol vents. However, on treatment of $\mathbf{1 4}$ with excess tert-butyl hydroperoxide in ethanol/ KOH , oxidation and spontaneous condensation took place, giving the pyridoacridone 15 in 66% yield or 21% overall yield from 2 -bromoaniline. A variety of substituted pyridoacridines should be accessible either by varying the cyclobutenedione or by direct functionalization of $\mathbf{1 5}$.
(48) Macor, J. E.; Chenard, B. L.; Post, R. J. J . Org. Chem. 1994, 59, 7496.

Conclusions

A general synthesis of 4,6,7-substituted quinoline-5,8quinones was developed beginning with the condensation of 2-lithio-N-BOC-1,4-di hydropyridines with cyclobutenediones. The synthesis is completed by thermolysis of the 1,2-adduct followed by oxidation of the resulting dihydroquinoline hydroquinone with chloranil in acetic acid. By use of this strategy, a concise synthesis of the pyridoacridine ring system was achieved.

Experimental Section

General Procedures. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 and 75.5 MHz , respectively, in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$ using chloroform ($7.26 \mathrm{ppm}{ }^{1} \mathrm{H}, 77.00 \mathrm{ppm}^{13} \mathrm{C}$) as the internal reference, unless otherwise stated. Analytical thin-layer chromatography (TLC) was performed on Merck Kieselgel $60 \mathrm{~F}_{254}$ plates. Visualization was accomplished by one or more of the following methods: UV light, phosphomolybdic acid stain, vanillin stain, and anisaldehyde stain. Solvents for extraction and chromatography were reagent grade and used as received. Chromatographic purification was conducted by flash column chromatography and Baeckström column chromatography ${ }^{49}$ using 32-63 $\mu \mathrm{m}$ flash silica gel obtained from EM. Solvents (THF, toluene) were dried over $4 \AA$ mol ecular sieves before use and had no more than 50 ppm of $\mathrm{H}_{2} \mathrm{O}$ as measured by Karl Fischer titration. Reagents purchased from commercial sources were used directly without further purification. All reactions were performed under a dry argon or nitrogen atmosphere in base-washed, flame-dried glassware. "Brine" refers to a saturated aqueous solution of NaCl . Unless otherwise specified, solutions of $\mathrm{NH}_{4} \mathrm{Cl}$ and NaHCO_{3} refer to saturated aqueous solutions.

Starting Materials. Thefollowing starting materials were prepared according to literature procedures: 1-(tert-butoxy-carbonyl)-1,4-di hydropyridine, ${ }^{40} 1$-(tert-butoxycarbonyl)-4-meth-yl-1,4-dihydropyridine, ${ }^{28} 1$-(tert-butoxycarbonyl)-4-n-butyl-1,4dihydropyridine, ${ }^{28}$ 3,4-di isopropoxy-3-cyclobutene-1,2-dione, ${ }^{50}$ 3-i sopropoxy-4-methyl-3-cyclobutene-1,2-dione, 50 3,4-diethyl-3-cyclobutene-1,2-dione,50 4-(4-fluorophenyl)-3-i sopropoxy-3-cyclobutene-1,2-dione. ${ }^{50}$

Dihydropyridine Synthesis. Because most of the dihydropyridines investigated in this study were not stable upon standing, $5 \mathbf{a}-\mathbf{g}$ were prepared immediately prior to use.

1-(tert-B utoxycarbonyl)-4-phenyl-1,4-di hydropyridine (5d). Pyridine ($3.00 \mathrm{~mL}, 37.09 \mathrm{mmol}, 1.50$ equiv) and Cul ($235 \mathrm{mg}, 1.23 \mathrm{mmol}, 0.05$ equiv) were dissolved in THF $\left(50 \mathrm{~mL}\right.$) at $-23^{\circ} \mathrm{C}$ in a 250 mL round-bottomed flask. Phenyl chloroformate ($3.87 \mathrm{~g}, 24.72 \mathrm{mmol}, 1.00$ equiv) was added dropwise with stirring. After 5 min , phenylmagnesium chloride ($12.36 \mathrm{~mL}, 2.0 \mathrm{M}$ in THF, $24.73 \mathrm{mmol}, 1.00$ equiv) was added via syringe pump over 40 min , and the resulting solution was stirred at $-23^{\circ} \mathrm{C}$ for 30 min . After being warmed to room temperature and stirred at that temperature for another 20 min , the reaction mixture was partitioned between aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \%, 35 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{~mL})$. The organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$, water (25 mL), $10 \% \mathrm{HCl}$ (2 $\times 25 \mathrm{~mL})$, and water ($3 \times 25 \mathrm{~mL}$) and then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated, leaving 6.76 g of a yellow solid. A portion of the crude solid (1.84 g) was dissolved in toluene (45 mL) and cooled to $-78^{\circ} \mathrm{C}$ in a 100 mL round-bottomed flask. Potassium tert-butoxide in THF ($19.90 \mathrm{~mL}, 1.00 \mathrm{M}, 19.90$ mmol, 3.00 equiv) was added dropwise, and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was quenched with water and then partitioned between water $(25 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The layers were separated, and the organic layer was washed with $5 \% \mathrm{NaOH}(2 \times 25 \mathrm{~mL})$ and water ($3 \times 25 \mathrm{~mL}$) and then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to a clear yellow oil. Chromatographic purifica

[^5]tion (Flash column, silica gel, $2.5 \mathrm{~cm} \times 10 \mathrm{~cm}, 10 \%$ EtOAc/ hexanes) gave 1-(tert-butoxycarbonyl)-4-phenyl-1,4-dihydropyridine as a col orless oil ($2.55 \mathrm{~g}, 8.87 \mathrm{mmol}, 85 \%$): TLC (silica gel, 20% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.72$); IR (neat, KBr pellet, cm^{-1}) 3060 (w), 3028 (w), 2978 (s), 1718 (s); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 7.38-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}$, $\mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.20-4.19$ ($\mathrm{m}, 1 \mathrm{H}$) , 1.55 (s, 9 H).

1-(tert-Butoxycarbonyl)-4-(2-methoxyphenyl)-1,4-dihydropyridine (5e). Magnesium turnings ($0.30 \mathrm{~g}, 12.51 \mathrm{mmol}$, 1.20 equiv) and $\mathrm{I}_{2}(5 \mathrm{mg})$ were mixed together and flamed under vacuum for $5-10 \mathrm{~s}$ in a 250 mL three-necked, roundbottomed flask equipped with an addition funnel and condenser. 2-Bromoanisole ($1.86 \mathrm{~mL}, 10.46 \mathrm{mmol}, 1.00$ equiv) was added dropwise, initially just a few drops neat, and then the remainder diluted in THF (10 mL). After 5 h , the resulting black solution was cannulated into a freshly prepared mixture of pyridine ($1.26 \mathrm{~mL}, 15.58 \mathrm{mmol}, 1.49$ equiv), copper(I) iodide ($99 \mathrm{mg}, 10.44 \mathrm{mmol}, 0.05$ equiv), and phenyl chloroformate ($1.31 \mathrm{~mL}, 10.440 \mathrm{mmol}, 1.00$ equiv) in THF (10 mL) cooled to $-23^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was warmed to room temperature and stirred for 30 min . The reaction mixture was partitioned between saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the layers were separated. The organic layer was washed with $1: 1 \mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}(40 \mathrm{~mL})$, water (20 $\mathrm{mL}), 10 \% \mathrm{HCl}(20 \mathrm{~mL})$, and water $(2 \times 20 \mathrm{~mL})$ and then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to a yellow oil (3.20 g). Potassium tert-butoxide in THF ($20.89 \mathrm{~mL}, 1.00 \mathrm{M}, 20.89$ mmol, 2.00 equiv) was added dropwise to a solution of the crude product in toluene (100 mL) at $-78{ }^{\circ} \mathrm{C}$. After being stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h , the reaction mixture was quenched with water and then partitioned between water (35 mL) and ether (100 mL). The layers were separated, and the organic layer was washed with $5 \% \mathrm{NaOH}(2 \times 35 \mathrm{~mL})$ and water ($2 \times$ 25 mL), dried (MgSO_{4}), filtered, and concentrated to a yellow oil that was purified by chromatography (flash column, silica gel, $2.5 \mathrm{~cm} \times 10 \mathrm{~cm}, 10 \%$ EtOAc/hexanes) to give 1-(tert-butoxycarbonyl)-4-(2-methoxyphenyl)-1,4-dihydropyridine as a col orless oil ($2.55 \mathrm{~g}, 8.87 \mathrm{mmol}, 85 \%$): TLC (silica gel, 20% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.49$); IR ($\mathrm{CDCl}_{3}, \mathrm{KCl}^{2} \mathrm{~cm}^{-1}$) 2983 (s), 2939 (s), 2250 (m), 1704 (s); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.30$ (dd, J = 7.5, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.20 (dt, J $=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.98 (app t, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.87-6.78(\mathrm{~m}, 3 \mathrm{H}), 4.98-4.90(\mathrm{~m}, 2$ H), 4.62-4.60 (m, 1 H), 3.83 (s, 3 H), 1.52 (s, 9 H).

1-(tert-Butoxycarbonyl)-4-(2-fluorophenyl)-1,4-dihydropyridine (5f). n-Butyllithium ($14.77 \mathrm{~mL}, 1.60 \mathrm{M}$ in hexane, $23.63 \mathrm{mmol}, 2.20$ equiv) was added dropwise to a solution of 2 -fluorobromobenzene ($3.76 \mathrm{~g}, 21.48 \mathrm{mmol}, 2.00$ equiv) dissolved in THF (50 mL) at $-78^{\circ} \mathrm{C}$. After 40 min , copper (1) iodide ($2.05 \mathrm{~g}, 10.76 \mathrm{mmol}, 1.00$ equiv) was added in one portion. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min and then warmed to $0^{\circ} \mathrm{C}$. After 1 h , the green solution was cannulated into a freshly prepared solution of pyridine ($1.30 \mathrm{~mL}, 16.07 \mathrm{mmol}, 1.50$ equiv) and phenyl chloroformate ($1.35 \mathrm{~mL}, 10.76 \mathrm{mmol}, 1.00$ equiv) in THF (50 mL) cooled to $-23^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was allowed to warm to room temperature and then quenched with $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with ether $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with 1:1 $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4}$ $\mathrm{OH}(100 \mathrm{~mL})$, water $(50 \mathrm{~mL}), 10 \% \mathrm{HCl}(50 \mathrm{~mL})$, and water (2 $\times 50 \mathrm{~mL}$) and then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to a yellow oil (3.40 g). The crude product was dissolved in 100 mL of toluene, cooled to $-78^{\circ} \mathrm{C}$, and treated dropwise with a sol ution of potassium tert-butoxide in THF ($19.33 \mathrm{~mL}, 1.00$ $\mathrm{M}, 19.33 \mathrm{mmol}, 1.80$ equiv). After 1.5 h , the reaction mixture was quenched with water and then partitioned between water (35 mL) and $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$. The layers were separated, and the organic layer was washed with $5 \% \mathrm{NaOH}(2 \times 50 \mathrm{~mL})$ and water $(3 \times 25 \mathrm{~mL})$ and then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to a yellow oil. Chromatographic purification (flash column, silica gel, $2.5 \mathrm{~cm} \times 10 \mathrm{~cm}, 10 \%$ EtOAc/hexanes) gave 1-(tert-butoxycarbonyl)-4-(2-fluorophenyl)-1,4-dihydropyridine as a colorless oil ($2.54 \mathrm{~g}, 9.23 \mathrm{mmol}, 86 \%$): TLC (silica gel, 20% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.62$); IR (neat, $\mathrm{KCl}_{\mathrm{Cm}}{ }^{-1}$) 2978 (s), 2932 (m), 1723 (s); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.51-$
6.96 (m, 5 H), 6.81 (br s, 1 H), 4.91 (br s, 1 H), 4.85 (br s, 1 H), 4.55 (m, 1 H), 1.51 ($\mathrm{s}, 9 \mathrm{H}$).

1-(tert-Butoxycarbonyl)-4-[4-(N,N-diallylamino)phenyl]-1,4-dihydropyridine ($\mathbf{5 g}$). n -Butyllithium ($1.87 \mathrm{~mL}, 2.20 \mathrm{M}$ in hexane, $4.11 \mathrm{mmol}, 2.00$ equiv) was added dropwise to a $-78{ }^{\circ} \mathrm{C}$ solution of 4 -bromo-N,N-diallylaniline ${ }^{51}$ ($1.04 \mathrm{~g}, 4.12$ $\mathrm{mmol}, 2.00$ equiv) dissolved in THF (20 mL) in a 50 mL roundbottomed flask. After 30 min , copper(I) iodide ($0.39 \mathrm{~g}, 2.05$ $\mathrm{mmol}, 1.00$ equiv) was added in one portion. The reaction mixture was allowed to warm to room temperature and then cannulated into a freshly prepared solution of pyridine (0.25 $\mathrm{mL}, 3.09 \mathrm{mmol}, 1.50$ equiv) and phenyl chloroformate (0.26 $\mathrm{mL}, 2.06 \mathrm{mmol}, 1.00$ equiv) in THF cooled to $-23^{\circ} \mathrm{C}$. After 1 h, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and the organic layer was washed with 1:1 $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}(40 \mathrm{~mL})$, water $(20 \mathrm{~mL}), 10 \% \mathrm{HCl}(20 \mathrm{~mL})$, and water $(2 \times 20 \mathrm{~mL})$ and then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to a yellow oil $(0.70 \mathrm{~g})$. The crude product was dissolved in 50 mL of toluene, cooled to $-78{ }^{\circ} \mathrm{C}$, and treated dropwise with a solution of potassium tert-butoxide in THF $(5.60 \mathrm{~mL}, 1.00 \mathrm{M}, 5.60 \mathrm{mmol}$, 2.72 equiv). After 1.5 h , the reaction mixture was partitioned between water (35 mL) and $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$. The organic layer was washed with $5 \% \mathrm{NaOH}(2 \times 50 \mathrm{~mL})$ and water $(3 \times 25$ mL) and then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to a yellow oil. Chromatographic purification (flash column, silica gel, $1.5 \mathrm{~cm} \times 10 \mathrm{~cm}, 5 \%$ EtOAc/hexanes) gave 1-(tert-butoxy-carbonyl)-4-[4-(N,N -diallylamino)phenyl]-1,4-di hydropyridine as a colorless oil ($0.56 \mathrm{~g}, 1.59 \mathrm{mmol}, 78 \%$): TLC (silica gel, 15% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.50$); IR (neat, $\mathrm{KCl}, \mathrm{cm}^{-1}$) 2967 (m), 2930 (m), 1727 (w), 1603 (m); 1H NMR (CDCl, 300 MHz) $\delta 7.08(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.90-5.79$ (m, 2 H), 5.21-5.14 (m, 4 H), 4.95$4.84(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.89(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~s}$, $9 \mathrm{H})$.

1,4-Dihydroquinolines by Condensation of 2-Lithiodihydropyridines and Cyclobutenediones. 1,8-(Carbonyl-oxy)-6,7-diisopropoxy-5-hydroxy-1,4-dihydroquinoline (7a). sec-Butyllithium ($2.29 \mathrm{~mL}, 1.30 \mathrm{M}$ in cycl ohexane, 2.98 mmol , 1.10 equiv) was added dropwise to a $-78^{\circ} \mathrm{C}$ solution of 1-(tert-butoxycarbonyl)-1,4-dihydropyridine (5a) ($0.49 \mathrm{~g}, 2.70$ mmol , 1.00 equiv) in THF (15 mL). The reaction mixture was warmed to $-42^{\circ} \mathrm{C}$, held at that temperature for 3 h , and then cannulated into a $-78{ }^{\circ} \mathrm{C}$ solution of 3,4-diisopropoxy-3cycl obutene-1,2-dione (3a) ($0.54 \mathrm{~g}, 2.72 \mathrm{mmol}, 1.01$ equiv) in THF (10 mL). After 2 h , the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(35 \mathrm{~mL})$, allowed to warm to room temperature, and extracted with ether ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with water $(3 \times 25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to a yellow oil. The crude product was degassed (six cycles, nitrogen-vacuum-nitrogen) and placed into a hot oil bath ($160-165^{\circ} \mathrm{C}$) for 1 h . Chromatographic purification (Baeckström col umn, silica gel, $1.5 \mathrm{~cm} \times$ 10 cm , gradient from 100\% hexanes to 50\% EtOAc/hexanes) gave 1,8-(carbonyloxy)-6,7-diisopropoxy-5-hydroxy-1,4-dihydroquinoline as a white solid ($0.44 \mathrm{~g}, 1.44 \mathrm{mmol}, 53 \%$): $\mathrm{mp} 79-$ $80^{\circ} \mathrm{C}$ (EtOAc/hexane); TLC (silica gel, 10% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.63$); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3512$ (m), 3056 (s), 2989 (s), 1779 (s); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) ~ \delta 6.66-6.32(\mathrm{~m}, 1 \mathrm{H})$, 5.81 (s, 1 H), $5.25-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.83$ (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.46 (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45 (dd, J $=3.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.31(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 150.7,144.7,134.3,132.8,124.1,123.0$, 118.2, 110.0, 96.7, 76.2, 74.5, 22.6, 22.4, 21.1. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, 62.94; H, 6.27; $\mathrm{N}, 4.59$. Found: C, 62.81; H, 6.29; N, 4.57.

1,8-(Carbonyloxy)-6-(4-fluorophenyl)-5-hydroxy-7-iso-propoxy-1,4-dihydroquinoline (7b). Following the procedure for 7a, above, 1-(tert-butoxycarbonyl)-1,4-dihydopyridine (5a) ($0.34 \mathrm{~g}, 1.88 \mathrm{mmol}, 1.00$ equiv) in THF (15 mL) was metalated at $-42{ }^{\circ} \mathrm{C}$ for 3 h with sec-butyllithium (1.59 mL , 1.30 M in cyclohexane, $2.07 \mathrm{mmol}, 1.10$ equiv) and condensed with 4-(4-fluorophenyl)-3-isopropoxy-3-cycl obutene-1,2-dione (3d) ($0.44 \mathrm{~g}, 1.88 \mathrm{mmol}, 1.00$ equiv) in THF (20 mL) at -78
(51) Tidwell, J. H.; Senn, D. R.; Buchwald, S. L. J . Am. Chem. Soc. 1991, 113, 4685.
${ }^{\circ} \mathrm{C}$. Workup, thermolysis neat ($160-165{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$), and chromatographic purification (Baeckström column, silica gel, 1.5 $\mathrm{cm} \times 10 \mathrm{~cm}$, gradient from 100\% hexanes to 50% EtOAcl hexanes) gave 1,8-(carbonyl oxy)-6-(4-fluorophenyl)-5-hydroxy-7-isopropoxy-1,4-dihydroquinoline as a white solid ($0.28 \mathrm{~g}, 0.82$ mmol , 44\%): mp 186-187 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); TLC (silica gel, 20% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.19$); IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3541$ (m), 2983 (m), 1781 (s), 1388 (s); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{dt}, \mathrm{J}=$ 8.1, 2.1 Hz, 1 H), 5.37-5.32 ($\mathrm{m}, \mathrm{J}=\mathrm{Hz}, 1 \mathrm{H}$), $4.85(\mathrm{~s}, 1 \mathrm{H})$, 4.75 (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.52(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}$, 6 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 160.9,150.7,147.5,138.0$, 133.0, 132.9, 128.1, 127.9, 124.4, 118.2, 116.3, 116.0, 115.1, 110.6, 97.7, 74.4, 22.4, 21.4. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{~F}$: C, 66.86; H, 4.72; N, 4.10; F, 5.57. Found: C, 66.90; H, 4.73; N, 4.08.

1,8-(Carbonyloxy)-6,7-diisopropoxy-5-hydroxy-4-meth-yl-1,4-dihydroquinoline (7c). 1-(tert-Butoxycarbonyl)-4-methyl-1,4-dihydropyridine (5b) ($0.78 \mathrm{~g}, 3.99 \mathrm{mmol}, 1.00$ equiv) in THF (30 mL) was metalated at $-42{ }^{\circ} \mathrm{C}$ for 3 h with secbutyllithium ($3.99 \mathrm{~mL}, 1.20 \mathrm{M}$ in cyclohexane, $4.79 \mathrm{mmol}, 1.20$ equiv) and condensed with 3,4-diisopropoxy-3-cyclobutene-1,2dione (3a) ($0.79 \mathrm{~g}, 3.99 \mathrm{mmol}, 1.00$ equiv) in THF (25 mL) at $-78^{\circ} \mathrm{C}$. Workup, thermolysis neat ($160-165^{\circ} \mathrm{C}, 45 \mathrm{~min}$), and chromatographic purification (B aeckström column, silica gel, $1.5 \mathrm{~cm} \times 10 \mathrm{~cm}$, gradient from 100\% hexanes to 50% EtOAd hexanes) gave 1,8-(6,7-diisopropoxy-5-hydroxy-4-methyl-1,4dihydroquinoline as a white solid ($0.70 \mathrm{~g}, 2.19 \mathrm{mmol}, 55 \%$): mp 100-102 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); TLC (silica gel, 20\% EtOAd hexanes, $\mathrm{R}_{\mathrm{f}}=0.32$); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3509(\mathrm{~m}), 3056$ (m), 1779 (s); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.68(\mathrm{dd}, \mathrm{J}=4.2$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.89(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{dd}, \mathrm{J}=4.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.51 (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83-3.75 $(\mathrm{m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H})$, $1.31(\mathrm{dd}, \mathrm{J}=6.0,1.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta$ 150.7, 145.0, 134.2, 132.8, 123.8, 122.3, 116.7, 116.5, 101.8, 76.1, 74.5, 27.9, 22.7, 22.6, 22.4, 22.3. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21}{ }^{-}$ NO_{5} : C, 63.94; H, 6.63; N, 4.39. Found: C, 64.03; H, 6.51; N, 4.27 .

1,8-(Carbonyloxy)-6,7-diethyl-5-hydroxy-4-methyl-1,4dihydroquinoline (7d). 1-(tert-Butoxycarbonyl)-4-methyl-1,4-dihydropyridine ($5 \mathbf{b}$) ($0.59 \mathrm{~g}, 3.02 \mathrm{mmol}, 1.00$ equiv) in THF (15 mL) was metalated at $-42^{\circ} \mathrm{C}$ for 3 h with sec-butyllithium ($2.56 \mathrm{~mL}, 1.30 \mathrm{M}$ in cyclohexane, $3.33 \mathrm{mmol}, 1.10$ equiv) and condensed with 3,4-diethyl-3-cyclobutene-1,2-di one (3b) (0.42 $\mathrm{g}, 3.04 \mathrm{mmol}, 1.01$ equiv) in THF (25 mL) at $-78^{\circ} \mathrm{C}$. Workup, thermolysis neat ($160-165^{\circ} \mathrm{C}, 45 \mathrm{~min}$), and chromatographic purification (Baeckström column, silica gel, $1.5 \mathrm{~cm} \times 10 \mathrm{~cm}$, gradient from 100\% hexanes to 50\% EtOAc/hexanes) gave 1,8-(carbonyloxy)-6,7-diethyl-5-hydroxy-4-methyl-1,4-dihydroquinol ine as a white solid ($0.51 \mathrm{~g}, 1.97 \mathrm{mmol}, 65 \%$): mp 132-133 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); TLC (silica gel, 20\% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=$ $0.24)$; IR ($\mathrm{CDCl}_{3}, \mathrm{KCl}, \mathrm{cm}^{-1}$) 3612 (m), 2973 (s), 2255 (m), 1769 (s); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.71(\mathrm{dd}, \mathrm{J}=8.1,1.8 \mathrm{~Hz}, 1$ H), 5.45 (s, 1 H), 5.22 (dd, J $=8.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86-3.80 (m, $1 \mathrm{H}), 2.81-2.63(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 75.5 MHz) $\delta 151.5,147.9,134.0,124.5,124.1,123.9,116.8$, 116.7, 107.9, 28.0, 22.6, 19.7, 19.2, 14.8, 14.7. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}$: C, 69.75; H, 6.24; $\mathrm{N}, 5.42$. Found: C, 69.31; H, 6.63; N, 5.43.

1,8-(Carbonyloxy)-4,6-dimethyl-5-hydroxy-7-isopropoxy-1,4-dihydroquinoline (7e). 1-(tert-Butoxycarbonyl)-4-meth-yl-1,4-dihydropyridine (5b) ($0.78 \mathrm{~g}, 3.99 \mathrm{mmol}, 1.00$ equiv) in THF (25 mL) was metalated at $-42{ }^{\circ} \mathrm{C}$ for 3 h with secbutyllithium ($4.36 \mathrm{~mL}, 1.10 \mathrm{M}$ in cyclohexane, $4.80 \mathrm{mmol}, 1.20$ equiv) and condensed with 3-isopropoxy-4-methyl-3-cydobutene 1,2-dione (3c) ($0.74 \mathrm{~g}, 4.80 \mathrm{mmol}, 1.20$ equiv) in THF (25 mL) at $-78{ }^{\circ} \mathrm{C}$. Workup, thermolysis neat ($160-165{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}$), and chromatographic purification (Baeckström column, silica gel, $1.5 \mathrm{~cm} \times 10 \mathrm{~cm}$, gradient from 100% hexanes to 50% EtOAc/hexanes) gave 1,8-(carbonyloxy)-4,6-dimethyl-5-hydroxy-7-isopropoxy-1,4-dihydroquinoline as a white solid ($0.46 \mathrm{~g}, 1.67$ mmol, 42\%): mp 147-148 ${ }^{\circ} \mathrm{C}$ (hexane/diethyl ether); TLC (silica gel, 20% EtOAc/hexanes, $\left.\mathrm{R}_{\mathrm{f}}=0.65\right)$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}\right.$, cm^{-1}) 3608 (s), 2981 (m), 1771 (s), 1375 (s); ${ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}$,
$300 \mathrm{MHz}) \delta 6.67(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, \mathrm{J}=7.2,4.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.86 (sept, $\mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.65 (br s, 1 H), 3.77$3.74(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~d}$, $\mathrm{J}=6.0 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 150.9,148.6$, 138.4, 125.1, 124.4, 117.0, 116.5, 110.7, 103.0, 74.1, 27.9, 22.7, 22.6, 9.0. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$: C, $65.44 ; \mathrm{H}, 6.22 ; \mathrm{N}$, 5.09. Found: C, 65.19; H, 6.27; N, 5.06.

1,8-(Carbonyloxy)-6-(4-fluorophenyl)-5-hydroxyl-7-iso-propoxy-4-methyl-1,4-dihydroquinoline (7f). 1-(tert-Bu-toxycarbonyl)-4-methyl-1,4-di hydropyridine (5b) ($0.53 \mathrm{~g}, 2.71$ mmol, 1.00 equiv) in THF (15 mL) was metalated $-42^{\circ} \mathrm{C}$ for 3 h with sec-butyllithium ($2.30 \mathrm{~mL}, 1.30 \mathrm{M}$ in cyclohexane, $2.99 \mathrm{mmol}, 1.10$ equiv) and condensed with 4-(4-flurophenyl)-3-isopropoxy-3-cyclobutene-1,2-dione (3d) ($0.64 \mathrm{~g}, 2.73 \mathrm{mmol}$, 1.01 equiv) in THF (20 mL) at $-78^{\circ} \mathrm{C}$. Workup, thermolysis neat ($160-165^{\circ} \mathrm{C}, 45 \mathrm{~min}$), and chromatographic purification (Baeckström column, silica gel, $1.5 \mathrm{~cm} \times 10 \mathrm{~cm}$, gradient from 100% hexanes to 50% EtOAc/hexanes) gave 1,8-(carbonyloxy)-6-(4-fluorophenyl)-5-hydroxyl-7-isopropoxy-4-methyl-1,4-dihydroquinoline as a white solid ($0.71 \mathrm{~g}, 2.00 \mathrm{mmol}, 74 \%$): mp 148-149 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); TLC (silica gel, 20\% EtOAd hexanes, $\mathrm{R}_{\mathrm{f}}=0.69$); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3535(\mathrm{w}), 2981$ (s), 1789 (m), 1391 (m); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 7.28-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.24 (dd, J = 8.1, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01 (s, 1 H), 4.71 (sept, J = $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.75(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, 1.11 (d, J $=6.0 \mathrm{~Hz}, 6 \mathrm{H}$); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 164.2$, 160.9, 150.7, 147.8, 137.9, 133.1, 117.3, 116.5, 116.3, 116.0, 115.3, 102.9, 74.4, 28.2, 22.5, 22.4. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{17}$ $\mathrm{NO}_{4} \mathrm{~F}: \mathrm{C}, 67.79 ; \mathrm{H}, 4.84 ; \mathrm{N}, 3.95 ; \mathrm{F}, 5.36$. Found: C, 67.55; H, 5.07; N, 3.94.

4-n-Butyl-1,8-(carbonyloxy)-6,7-diisopropoxy-5-hydroxy-1,4-dihydroquinoline (7g). 1-(tert-Butoxycarbonyl)-4-n-bu-tyl-1,4-dihydropyridine 5 c ($1.07 \mathrm{~g}, 4.51 \mathrm{mmol}, 1.00$ equiv) in THF (25 mL) was metalated at $-42{ }^{\circ} \mathrm{C}$ for 3 h with secbutyllithium ($4.51 \mathrm{~mL}, 1.20 \mathrm{M}$ in cyclohexane, $5.41 \mathrm{mmol}, 1.20$ equiv) and then condensed with 3,4-diisopropoxy-3-cydobutene-1,2-dione (3a) ($0.89 \mathrm{~g}, 4.49 \mathrm{mmol}, 1.00$ equiv) in THF (40 mL) at $-78{ }^{\circ} \mathrm{C}$. Workup, thermolysis neat ($160-165{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}$), and chromatographic purification (Baeckström col umn, silica gel, $1.5 \mathrm{~cm} \times 10 \mathrm{~cm}$, gradient from 100\% hexanes to 50% EtOAc/hexanes) gave 4-n-butyl-1,8-(carbonyloxy)-6,7-diisopro-poxy-5-hydroxy-1,4-dihydroquinol ine as a white solid (1.05 g, $2.91 \mathrm{mmol}, 65 \%): \mathrm{mp} 104-105^{\circ} \mathrm{C}$ (diethyl ether/hexane); TLC (silica gel, 20\% EtOAc/hexanes, $\left.\mathrm{R}_{\mathrm{f}}=0.25\right)$; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}$, cm^{-1}) 3510 (s), 3060 (w), 2981 (s), 2932 (m), 1777 (s); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.70(\mathrm{dd}, \mathrm{J}=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1$ H), 5.19 (dd, J $=7.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.86 (sept, J $=6.0 \mathrm{~Hz}, 1$ H), 4.47 (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82-3.79 (m, 1 H), 2.01$0.82(\mathrm{~m}, 9 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6$ H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}$) $\delta 150.8,144.9,134.2,132.7$, 123.7, 123.0, 117.6, 114.9, 100.5, 76.1, 74.5, 34.7, 32.8, 27.6, 22.7, 22.6, 22.4, 22.3, 14.0. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{5}$: C, 66.46; H, 7.53; N, 3.88. Found: C, 66.54; H, 7.60; N, 3.94.

4-n-Butyl-1,8-(carbonyloxy)-5-hydroxy-7-isopropoxy-6-methyl-1,4-dihydroquinoline (7h). 1-(tert-Butoxycarbo-nyl)-4-n-butyl-1,4-dihydropyridine (5c) ($0.35 \mathrm{~g}, 1.47 \mathrm{mmol}, 1.00$ equiv) in THF (20 mL) was metalated at $-42^{\circ} \mathrm{C}$ for 3 h with sec-butyllithium ($1.25 \mathrm{~mL}, 1.30 \mathrm{M}$ in cyclohexane, 1.62 mmol , 1.10 equiv) and then condensed with 3 -isopropoxy-4-methyl3 -cyclobutene-1,2-dione (3c) ($0.23 \mathrm{~g}, 1.47 \mathrm{mmol}, 1.00$ equiv) in THF (15 mL) at $-78^{\circ} \mathrm{C}$. Workup, thermolysis neat (160$165{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}$), and chromatographic purification (Baeckström col umn, silica gel, $1.5 \mathrm{~cm} \times 10 \mathrm{~cm}$, gradient from 100\% hexanes to 50\% EtOAc/hexanes) gave 4-n-butyl-1,8-(carbony-loxy)-5-hydroxy-7-isopropoxy-6-methyl-1,4-dihydroquinoline as a white solid ($0.26 \mathrm{~g}, 0.82 \mathrm{mmol}, 55 \%$): $\mathrm{mp} 90-91^{\circ} \mathrm{C}$ (hexane/ diethyl ether); TLC (silica gel, 20\% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.42$); IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3595$ (w), 2962 (w), 2933 (w), 1777 (s); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.72(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (dd, J = 7.2, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05 (br s, 1 H$), 4.84$ (sept, J $=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.30$ (d, J $=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-1.08(\mathrm{~m}, 4 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, $3 \mathrm{H})$; ${ }^{33} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 151.1,148.6,138.4,125.6$, $124.3,117.5,111.1,101.9,74.1,35.3,32.8,27.6,22.7,22.7,14.0$,
9.2. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C}, 68.12 ; \mathrm{H}, 7.30 ; \mathrm{N}, 4.41$. Found: C, 68.72; H, 7.86; N, 3.98.

1,8-(Carbonyloxy)-6,7-diisopropoxy-5-hydroxy-4-phen-yl-1,4-dihydroquinoline (7i). 1-(tert-Butoxycarbonyl)-4-phenyl-1,4-dihydropyridine (5 d) ($0.48 \mathrm{~g}, 1.87 \mathrm{mmol}, 1.00$ equiv) in THF (15 mL) was metalated at $-42{ }^{\circ} \mathrm{C}$ for 3 h with secbutyllithium ($1.78 \mathrm{~mL}, 1.10 \mathrm{M}$ in cyclohexane, $1.96 \mathrm{mmol}, 1.05$ equiv) and then condensed with 3,4-diisopropoxy-3-cyclobutene-1,2-dione (3a) ($0.39 \mathrm{~g}, 1.97 \mathrm{mmol}, 1.05$ equiv) in THF (20 mL) at $-78^{\circ} \mathrm{C}$. Workup, thermolysis neat ($160-165^{\circ} \mathrm{C}, 45 \mathrm{~min}$), and chromatographic purification (Baeckström column, silica gel, $1.5 \mathrm{~cm} \times 10 \mathrm{~cm}$, gradient from 100% hexanes to 50% EtOAc/hexanes) gave 1,8-(carbonyloxy)-6,7-diisopropoxy-5-hy-droxy-4-phenyl-1,4-dihydroquinoline as a white solid (0.43 g , $1.12 \mathrm{mmol}, 60 \%$): $\mathrm{mp} 115-116^{\circ} \mathrm{C}$ (EtOAc/hexane); TLC (silica gel, 20\% EtOAc/hexanes, $\left.\mathrm{R}_{\mathrm{f}}=0.26\right)$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right)$ 3054 (w), 2981 (m), 1781 (s), 1672 (m); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 7.32-7.17(\mathrm{H}), 6.73(\mathrm{dd}, \mathrm{J}=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}$, $1 \mathrm{H}), 5.28(\mathrm{dd}, \mathrm{J}=7.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.45$ (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.36 (dd, J $=6.0,1.2 \mathrm{~Hz}, 6 \mathrm{H}$), 1.21 (t, $\mathrm{J}=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 150.7,145.1$, 143.6, 134.9, 132.9, 128.5, 126.9, 123.7, 122.5, 116.4, 99.8, 76.1, 74.7, 39.0, 22.7, 22.5, 22.4. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5}$: C , 69.28; H, 6.08; N, 3.67. Found: C, 69.14; H, 6.10; N, 3.65.

1,8-(Carbonyloxy)-5-hydroxy-7-isopropoxy-6-methyl-4-phenyl-1,4-dihydroquinoline (7j). 1-(tert-Butoxycarbonyl)4 -phenyl-1,4-dihydropyridine (5d) ($0.89 \mathrm{~g}, 3.46 \mathrm{mmol}, 1.00$ equiv) in THF (25 mL) was metalated at $-42^{\circ} \mathrm{C}$ for 3 h with sec-butyllithium ($3.30 \mathrm{~mL}, 1.10 \mathrm{M}$ in cyclohexane, 3.63 mmol , 1.05 equiv) and then condensed with 3 -isopropoxy-4-methyl-3-cyclobutene-1,2-di one ($\mathbf{3 c}$) ($0.56 \mathrm{~g}, 3.63 \mathrm{mmol}, 1.05$ equiv) in THF (25 mL) at $-78^{\circ} \mathrm{C}$. Workup, thermolysis neat ($160-$ $165{ }^{\circ} \mathrm{C}$, 45 min), and chromatographic purification (Baeckström column, silica gel, $1.5 \mathrm{~cm} \times 10 \mathrm{~cm}$, gradient from 100% hexanes to 50% EtOAC/hexanes) gave 1,8 -(carbonyloxy)-5-hydroxy-7-isopropoxy-6-methyl-4-phenyl-1,4-dihydroquinoline as a white solid ($0.48 \mathrm{~g}, 1.42 \mathrm{mmol}, 41 \%$): mp 155-156 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); TLC (silica gel, 20\% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=$ 0.69); IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3541(\mathrm{~m}), 2934(\mathrm{~m}), 1773$ (s); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.23 (dd, J $=7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.88(\mathrm{~m}, 2 \mathrm{H})$, 4.72 (br s, 1 H$), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 150.8,148.7,143.0,139.3,129.3$, $128.1,127.6,124.9,124.2,116.4,115.0,112.2,100.5,74.2,39.4$, 22.8, 9.2. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}: \mathrm{C}, 71.20 ; \mathrm{H}, 5.68 ; \mathrm{N}$, 4.15. Found: C, 70.91; H, 5.63; N, 4.11.

1,8-(Carbonyloxy)-6,7-diisopropoxy-5-hydroxy-4-(2-methoxyphenyl)-1,4-dihydroquinoline (7k). 1-(tert-Bu-toxycarbonyl)-4-(2-methoxyphenyl)-1,4-dihydropyridine (5e) ($0.95 \mathrm{~g}, 3.32 \mathrm{mmol}, 1.00$ equiv) in THF (30 mL) was metalated at $-42{ }^{\circ} \mathrm{C}$ for 3 h with sec-butyllithium ($2.81 \mathrm{~mL}, 1.30 \mathrm{M}$ in cyclohexane, $3.65 \mathrm{mmol}, 1.10$ equiv) and then condensed with 3,4-di i sopropoxy-3-cyclobutene-1,2-dione 3a ($0.79 \mathrm{~g}, 3.99 \mathrm{mmol}$, 1.20 equiv) in THF (25 mL) at $-78^{\circ} \mathrm{C}$. Workup, thermolysis neat ($160-165{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$), and chromatographic purification (Baeckström column, silica gel, $2.5 \mathrm{~cm} \times 10 \mathrm{~cm}$, gradient from 100\% hexanes to 50\% EtOAc/hexanes) gave 1,8-(carbonyloxy)-6,7-diisopropoxy-5-hydroxy-4-(2-methoxyphenyl)-1,4-dihydroquinoline as a white solid ($0.78 \mathrm{~g}, 1.90 \mathrm{mmol}, 57 \%$): mp 129$130{ }^{\circ} \mathrm{C}$ (EtOAc/hexane); TLC (silica gel, 15% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.25$); IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3504$ (s), 3062 (s), $2981(\mathrm{~s})$, 1779 (s); ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.23-7.18(\mathrm{~m}, 1 \mathrm{H})$, 6.93-6.87 (m, 3H), 6.72 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H})$, 4.94 (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.48 (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89 ($\mathrm{s}, 3 \mathrm{H}$), $1.39(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{dd}, \mathrm{J}=6.0,2.1 \mathrm{~Hz}, 6$ H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}$) $\delta 155.8,150.8,145.0,134.9$, 133.0, 131.3, 129.0, 128.0, 123.8, 123.3, 121.1, 116.2, 114.3, $110.7,99.4,76.1,74.6,55.6,22.7,22.5,22.4$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{6}: \mathrm{C}, 67.14 ; \mathrm{H}, 6.12 ; \mathrm{N}, 3.40$. Found: C, $67.24 ; \mathrm{H}$, 5.90; N, 3.41.

1,8-(Carbonyloxy)-6,7-diisopropoxy-4-(2-fluorophenyl)-5-hydroxy-1,4-dihydroquinoline (71). 1-(tert-Butoxycarbo-nyl)-4-(2-fluorophenyl)-1,4-dihydropyridine (5f) ($0.24 \mathrm{~g}, 0.87$ $\mathrm{mmol}, 1.00$ equiv) in THF (10 mL) was metalated $-42^{\circ} \mathrm{C}$ for 3 h with sec-butyllithium ($0.81 \mathrm{~mL}, 1.30 \mathrm{M}$ in cyclohexane, $1.05 \mathrm{mmol}, 1.21$ equiv) and then condensed with 3,4-diisopro-
poxy-3-cycl obutene-1,2-dione (3a) ($0.21 \mathrm{~g}, 1.06 \mathrm{mmol}, 1.22$ equiv) in THF (25 mL) at $-78^{\circ} \mathrm{C}$. Workup, thermolysis neat ($160-165^{\circ} \mathrm{C}, 1 \mathrm{~h}$), and chromatographic purification (Baeckström col umn, silica gel, $1.5 \mathrm{~cm} \times 10 \mathrm{~cm}$, gradient from 100% hexanes to 50\% EtOAc/hexanes) gave 1,8-(carbonyloxy)-6,7di isopropoxy-4-(2-fluorophenyl)-5-hydroxy-1,4-dihydroquinoline as a white solid ($185 \mathrm{mg}, 0.46 \mathrm{mmol}, 53 \%$): $\mathrm{mp} 147.2-$ $147.9^{\circ} \mathrm{C}$ (EtOAc/hexane); TLC (silica gel, 20% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.35$); IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3504$ (s), 3060 (s), 1781 (s), 1389 (s); ${ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.22-7.15(\mathrm{~m}, 1 \mathrm{H})$, $7.06-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H})$, $5.31-5.27(\mathrm{~m}, 2 \mathrm{H}), 4.91$ (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.47 (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.20-1.23(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 161.5,158.2,150.6,145.0,135.1$, 132.8, 130.3, 130.1, 129.9, 128.5, 128.4, 123.6, 123.0, 116.9, 116.9, 115.5, 115.2, 113.3, 98.3, 74.7, 31.9, 31.8, 22.7, 22.4. 22.4. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~F}$: C, 66.16; $\mathrm{H}, 5.55$; N, 3.51; F, 4.76. Found: C, 66.40; H, 5.59; N, 3.44.

1,8-(Carbonyloxy)-4-[4-(N,N-diallylamino)phenyl]-6,7-diethyl-5-hydroxy-1,4-dihydroquinoline (7m). 1-(tert-Bu-toxycarbonyl)-4-[4-(N,N-diallylamino)phenyl]-1,4-dihydropyridine ($5 \mathbf{b}$) ($0.45 \mathrm{~g}, 1.28 \mathrm{mmol}, 1.00$ equiv) in THF (15 mL) was metalated at $-42^{\circ} \mathrm{C}$ for 3 h with sec-butyllithium (1.08 $\mathrm{mL}, 1.30 \mathrm{M}$ in cyclohexane, $1.40 \mathrm{mmol}, 1.09$ equiv) and then condensed with 3,4-diethyl-3-cycl obutene-1,2-dione (3b) (0.18 $\mathrm{g}, 1.30 \mathrm{mmol}, 1.02$ equiv) in THF (15 mL) at $-78^{\circ} \mathrm{C}$. Workup, thermolysis neat ($160-165{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$), and chromatographic purification (Baeckström column, silica gel, $1.5 \mathrm{~cm} \times 10 \mathrm{~cm}$, gradient from hexanes to 50% EtOAc/hexanes) gave 1,8-(carbonyloxy)-4-[4-(N,N-diallylamino)phenyl]-6,7-diethyl-5-hy-droxy-1,4-dihydroquinoline as a white solid ($0.33 \mathrm{~g}, 0.79 \mathrm{mmol}$, 62\%): mp 132-133 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); TLC (silica gel, 15% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.26$); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3514(\mathrm{~m})$, 2973 (m), 1775 (s); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.09(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ (dd, J $=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, \mathrm{J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.88-5.76$ (m, 2 H), 5.16-5.12 (m, 4 H), 4.77 (br s, $1 \mathrm{H}), 4.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.89(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.71(\mathrm{q}, \mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.58(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.05(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 150.7$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 74.98; $\mathrm{H}, 6.78 ; \mathrm{N}, 6.73$. Found: C, 74.90; H, 6.81; N, 6.77.

Quinoline Quinone Synthesis. 6,7-Diisopropoxy-4-methylquinoline-5,8-dione (8c). 1,8-(Carbonyloxy)-6,7-di-isopropoxy-5-hydroxy-4-methyl-1,4-dihydroquinoline (7c) (194 $\mathrm{mg}, 0.61 \mathrm{mmol}, 1.00$ equiv) in 1 mL of acetic acid was treated with o-chloranil ($329 \mathrm{mg}, 1.34 \mathrm{mmol}, 2.20$ equiv) at room temperature. After 5 h , the reaction mixture was quenched with ice-cold NaOH (20% aqueous) to a pH near 7.0 . Ether (100 mL) was added, and the organic layer was washed with water ($5 \times 25 \mathrm{~mL}$) and then dried $\left(\mathrm{MgSO}_{4}\right)$ and passed through a pad of neutral alumina. The eluent was concentrated to a red oil that was chromatographed (preparative TLC plate, alumina, $0.25 \mathrm{~mm}, 50 \%$ EtOAc/hexanes) to give 6,7-di isopro-poxy-4-methylquinoline-5,8-dione as a yellow oil ($96.2 \mathrm{mg}, 0.33$ $\mathrm{mmol}, 55 \%$): TLC (silica gel, 50% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.18$); IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3058$ (w), 2983 (s), 1667 (s); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.74(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00-4.93(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~d}, \mathrm{~J}=3.6$ $\mathrm{Hz}, 6 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.5$ MHz) δ 183.5, 181.0, 152.6, 150.1, 148.2, 148.1, 147.1, 76.4, 76.1, 22.7, 22.0; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$ 289.1314, found 289.1313 .

4,6-Dimethyl-7-isopropoxyquinoline-5,8-dione (8e). Following the procedure for 8c, 1,8-(carbonyl oxy)-4,6-dimethyl-5-hydroxy-7-isopropoxy-1,4-dihydroquinoline (7e) ($60 \mathrm{mg}, 0.22$ mmol, 1.00 equiv) and o-chloranil ($110 \mathrm{mg}, 0.45 \mathrm{mmol}, 2.05$ equiv) gave after workup and chromatographic purification (preparative TLC plate, alumina, $0.25 \mathrm{~mm}, 33 \% \mathrm{EtOAd}$ hexanes) 4,6-dimethyl-7-isopropoxyquinoline-5,8-dione as a yellow oil ($25 \mathrm{mg}, 0.102 \mathrm{mmol}, 47 \%$): $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right)$ 3060 (m), 2986 (m), 1684 (s), 1652 (s), 1621 (m); ¹H NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.75(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=4.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.08 (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.80(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3$ $\mathrm{H}), 1.35(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta$ 187.2, 180.0, 156.3, 152.4, 150.0, 148.4, 133.9, 130.9, 127.2,
53.4, 23.0, 22.2, 9.8; HRMS (EI) cal cd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}$ 245.1052, found 245.1047 .

4-n-Butyl-6,7-diisopropoxyquinoline-5,8-dione (8g). 4-n-Butyl-1,8-(carbonyloxy)-6,7-diisopropoxy-5-hydroxy-1,4-dihydroquinoline ($\mathbf{7 g}$) ($330 \mathrm{mg}, 0.91 \mathrm{mmol}, 1.00$ equiv) and o-chloranil ($494 \mathrm{mg}, 2.01 \mathrm{mmol}, 2.20$ equiv) gave after workup and chromatographic purification (preparative TLC plate, alumina, $0.25 \mathrm{~mm}, 50 \%$ EtOAc/hexanes) 4-n-butyl-6,7-diisopropoxyquin-oline-5,8-dione as a red oil ($282 \mathrm{mg}, 0.85 \mathrm{mmol}, 93 \%$): TLC (silica gel, 50% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.33$); IR ($\mathrm{CDCl}_{3}, \mathrm{KCl}$, $\left.\mathrm{cm}^{-1}\right) 2965$ (m), 2935 (m), 2242 (w), 1667 (s); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3$, $300 \mathrm{MHz}) \delta 8.76(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1$ $\mathrm{H}), 5.02-4.94(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.39$ $(\mathrm{m}, 4 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.35(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 6 \mathrm{H})$, $0.96(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 183.2$, 180.9, 154.7, 152.5, 148.3, 148.2, 146.8, 129.7, 125.5, 76.3, 76.0, 33.9, 32.2, 22.7, 22.6, 22.6, 13.7; HRMS (EI) cal cd for $\mathrm{C}_{19} \mathrm{H}_{25}$ NO_{4} 331.1783, found 331.1796.

4-n-B utyl-7-isopropoxy-6-methylquinoline-5,8-dione (8h). 4-n-Butyl-1,8-(carbonyloxy)-5-hydroxy-7-isopropoxy-6-methyl-1,4-dihydroquinoline (7h) ($65 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.00$ equiv) and o-chloranil ($101 \mathrm{mg}, 0.41 \mathrm{mmol}, 2.00$ equiv) gave after workup and chromatographic purification (preparative TLC plate, alumina, $0.25 \mathrm{~mm}, 20 \%$ EtOAc/hexanes) 4-n-butyl-7-isopropoxy-6-methylquinoline-5,8-dione as a yellow oil (43 $\mathrm{mg}, 0.15 \mathrm{mmol}, 73 \%$): TLC (silica gel, 20\% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.11$); IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}$) 3058 (m), 2935 (s), 2875 (m), 1685 (s), 1652 (s), 1623 (s); ${ }^{1} \mathrm{H} N \mathrm{NRR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $8.76(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{q}, \mathrm{J}$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$, 1.57$1.48(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=\mathrm{Hz}, 6 \mathrm{H}), 0.93$ $(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 186.9,179.9$, 156.1, 154.6, 152.4, 148.7, 133.9, 129.9, 126.7, 34.1, 32.3, 30.3, 23.0, 22.9, 13.9, 9.8; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}$ 287.1521, found: 287.1516.

6,7-Diisopropoxy-4-phenylquinoline-5,8-dione (8i). 1,8-(Carbonyloxy)-6,7-diisopropoxy-5-hydroxy-4-phenyl-1,4-dihydroquinoline (7 ii) ($67 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.00$ equiv) and o-chloranil ($86 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.99$ equiv) gave after workup and chromatographic purification (preparative TLC plate, alumina, $0.25 \mathrm{~mm}, 50 \%$ EtOAc/hexanes) 6,7-diisopropoxy-4-phenylquino-line-5,8-dione as a yellow oil ($38.7 \mathrm{mg}, 0.11 \mathrm{mmol}, 62 \%$): TLC (silica gel, 50% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.47$); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}\right.$, $\left.\mathrm{cm}^{-1}\right) 2983(\mathrm{~m}), 2250(\mathrm{~m}), 1671(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR (CDCl $\left.3,300 \mathrm{MHz}\right)$ $\delta 8.88(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.23(\mathrm{~m}$, $2 \mathrm{H}), 5.02-4.86(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}$ $=6.0 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 181.6,180.8$, 152.8, 152.7, 151.4, 148.2, 147.3, 138.5, 130.1, 128.4, 128.2, 127.8, 76.3, 76.3, 22.8, 22.7; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$ 351.1470 , found 351.1455 .

7-I sopropoxy-6-methyl-4-phenylquinoline-5,8-dione (8j). 1,8-(Carbonyloxy)-5-hydroxy-7-isopropoxy-6-methyl-4-phenyl-1,4-dihydroquinoline (7 j) ($54 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.00$ equiv) and o-chloranil ($80.7 \mathrm{mg}, 0.33 \mathrm{mmol}, 2.05$ equiv) gave after workup and chromatographic purification (preparative TLC plate, alumina, $0.25 \mathrm{~mm}, 50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) 4-phenyl-6-methyl-7-isopropoxyquinoline-5,8-dione as a yellow oil (40.4 mg, 0.131 mmol, 82%): TLC (alumina, 50% EtOAc/hexanes, $R_{f}=0.32$); IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3058$ (m), 2939 (m), 1685 (s), 1657 (s); ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.86(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-$ $7.36(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.08$ (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.97(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5\right.$ $\mathrm{MHz}) \delta 185.0,179.7,156.4,152.5,151.3,148.5,138.8,133.9$, 130.2, 128.3, 128.1, 127.7, 126.1, 76.3, 23.1, 15.3; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} 307.1208$, found 307.1203.

6,7-Diisopropoxy-4-(2-methoxyphenyl)quinoline-5,8dione (8k). 1,8-(Carbonyloxy)-6,7-diisopropoxy-5-hydroxy-4-(2-methoxy-phenyl)-1,4-dihydroquinoline (7k) (100 mg, 0.24 mmol, 1.00 equiv) and o-chloroanil ($120 \mathrm{mg}, 0.49 \mathrm{mmol}, 2.00$ equiv) gave after workup and chromatographic purification (preparative TLC plate, alumina, $0.25 \mathrm{~mm}, 50 \%$ EtOAc/ hexanes) 6,7-diisopropoxy-4-(2-methoxyphenyl)qui nol ine-5,8dione as a yellow oil ($72 \mathrm{mg}, 0.19 \mathrm{mmol}, 77 \%$): TLC (alumina, 50% EtOAc/hexanes, $\left.\mathrm{R}_{\mathrm{f}}=0.23\right)$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3060$ (s), 2983 (m), 1671 (s), 1605 (s); ${ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $8.86(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dd}, \mathrm{J}=$
$7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, 1 H), 4.94 (sept, J $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.62 (s, 3 H), 1.34-1.21 (m, 2 H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,75.5 \mathrm{MHz}\right)$ $\delta 181.5,181.0,155.6,153.0,148.4,148.4,147.4,147.3,130.1$, 130.0, 128.6, 127.9, 126.7, 120.9, 110.5, 76.2, 75.9, 55.3, 22.8, 22.7, 22.6; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5}$ 381.1563, found 381.1576.

6,7-Diisopropoxy-4-(2-fluorophenyl)qui noline-5,8-dione (81). 1,8-(Carbonyloxy)-6,7-diisopropoxy-4-(2-fluorophe-nyl)-5-hydroxy-1,4-dihydroquinoline (7I) (92 mg, 0.23 mmol , 1.00 equiv) and o-chloroanil ($102 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.80$ equiv) gave after workup and chromatographic purification (preparative TLC plate, alumina, $0.25 \mathrm{~mm}, 50 \%$ EtOAc/hexanes) 6,7-diisopropoxy-4-(2-fluorophenyl)quinoline-5,8-dione as a yellow oil ($70.2 \mathrm{mg}, 0.19 \mathrm{mmol}, 82 \%$): TLC (silica gel, 50\% EtOAc/ hexanes, $\mathrm{R}_{\mathrm{f}}=0.44$); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KCl}, \mathrm{cm}^{-1}\right) 3060$ (s), 2987 (s), 1671 (m), 1607 (m); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.93(\mathrm{~d}, \mathrm{~J}=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}$, $\mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (sept, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.90 (sept, J = $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 181.5,180.7,160.6,157.3$, 148.3, 147.7, 147.5, 144.4, 130.7, 130.6, 130.1, 129.2, 126.4, 126.2, 126.0, 124.5, 124.4, 115.5, 115.2, 76.4, 76.3, 22.8, 22.7; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~F}$ 369.1376, found 369.1380.

Construction of the Pyridoacridone Ring System. 1-(2-B romophenyl)-2,5-dimethylpyrrole (9). A solution of 2-bromoaniline ($10.0 \mathrm{~g}, 58.13 \mathrm{mmol}, 1.0$ equiv), 2,5-hexanedione ($6.848 \mathrm{~g}, 60 \mathrm{mmol}, 1.03$ equiv), and $\mathrm{AcOH}(1.00 \mathrm{~mL}, 17.47$ mmol , 0.30 equiv) in toluene (70 mL) was heated at reflux for 48 h with removal of water. The solution was cooled, diluted with EtOAc (100 mL), washed with $2 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$, brine (100 mL), 1 M NaHCO 3 (100 mL), and brine (100 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. After filtration and removal of solvents the resulting brown oil (14.5 g) was purified by chromatography (Baeckström column, silica gel, $2.5 \mathrm{~cm} \times 12 \mathrm{~cm}$, gradient from 100% hexanes to 5% EtOAc/hexanes) or short-path distillation and gave a yellow oil in 97% yield: bp $105^{\circ} \mathrm{C}(1.7 \mathrm{mmHg})$; TLC (silica gel, 5\% EtOAc/hexanes, $\left.\mathrm{R}_{\mathrm{f}}=0.36\right)$; IR ($\mathrm{CHCl}_{3}, \mathrm{KCl}$, cm^{-1}) 3064 (w), 2991 (m), 2918 (w), 1590 (w), 1483 (s), 1398 (m); $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,300 \mathrm{MHz}\right) \delta 7.72(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H})$, $7.32(\mathrm{~m}, 2 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right.$, $75.5 \mathrm{MHz}) \delta 138.7$ (s), 133.5 (d), 130.8 (d), 130.0 (d), 128.5 (s), 128.4 (d), 124.6 (s), 105.9 (d), 12.8 (q). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12^{-}}$ BrN: C, 57.62; H, 4.84; Br, 31.95; N, 5.60. Found: C, 57.77; H, 4.86; N, 5.59.

1-(tert-B utoxycarbonyl)-4-[2-(2,5-dimethylpyrrol-1-yl)-phenyl]-1,4-dihydropyridine (11). A solution of 1-(2-bro-mophenyl)-2,5-dimethylpyrrole (9) ($5.0 \mathrm{~g}, 20 \mathrm{mmol}, 1.0$ equiv) in dry THF (25 mL) was heated at reflux with magnesium turnings ($0.535 \mathrm{~g}, 22 \mathrm{mmol}, 1.1$ equiv) and iodine ($0.02 \mathrm{~g}, 0.06$ mmol) until the magnesium had reacted. The resulting black solution was cooled to room temperature and cannulated into a freshly prepared mixture of pyridine ($2.4 \mathrm{~mL}, 30 \mathrm{mmol}, 1.5$ equiv), phenyl chloroformate ($2.5 \mathrm{~mL}, 20 \mathrm{mmol}, 1.0$ equiv), and cuprous iodide ($0.19 \mathrm{~g}, 1.0 \mathrm{mmol}, 0.05$ equiv) in 100 mL of THF at $-23^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was allowed to warm to room temperature and then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (200 mL) and extracted with EtOAc (100 mL). After removal of sol vent, the resulting yellow oil was dissolved in 200 mL of dry toluene, cooled to $-78^{\circ} \mathrm{C}$, and treated dropwise with potassium tert-butoxide in THF ($40 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 40 mmol, 2.0 equiv). After 3 h , the reaction mixture was warmed to room temperature, quenched with water (200 mL), and extracted with EtOAc (100 mL), and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to a yellow oil. Crystallization from methanol gave a white solid (6.03 g , 86\%): mp 104-105 ${ }^{\circ} \mathrm{C}$; TLC (silica gel, 5% EtOAc/hexanes, R_{f} $=0.24)$; IR ($\mathrm{CHCl}_{3}, \mathrm{KCl}, \mathrm{cm}^{-1}$) 3025 (w), 2985 (w), 2924 (w), 1708 (m), 1685 (m), 1488 (w), 1370 (s), 1337 (s), 1320 (s), 1207 (m), $1128(\mathrm{~m}), 976(\mathrm{~m}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.57(\mathrm{~m}$, $1 \mathrm{H}), 7.47(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H})$, 6.75 (m, 1 H$), 5.92(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 3.71$ $(\mathrm{m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 6 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.5\right.$ $\mathrm{MHz}) \delta 150.0$ (s), 144.7 (s), 135.8 (s), 131.1 (d), 129.3 (d), 128.7 (d), 128.5 (s), 127.3 (d), 122.9 (d), 122.7 (d), 108.2 (d), 107.9 (d), 105.8 (d), 82.1 (s), 33.2 (d), 28.2 (q), 12.9 (q). Anal. Calcd
for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 75.40 ; \mathrm{H}, 7.48 ; \mathrm{N}, 7.99$. Found: $\mathrm{C}, 75.28$; H, 7.45; N, 7.92.

1,8-(Carbonyloxy)-6,7-diisopropoxy-4-[2-(2,5-dimeth-ylpyrrol-1-yl)phenyl]-5-hydroxy-1,4-dihydroquinoline (13). 1-(tert-Butoxycarbonyl)-4-[2-(2,5-dimethylpyrrol-1-yl)phenyl]-1,4-dihydropyridine (11) ($3.50 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv) was dissolved in 50 mL of dry THF and cooled to $-78^{\circ} \mathrm{C}$. To this solution was added sec-butyllithium ($9.3 \mathrm{~mL}, 1.3 \mathrm{M}$ in cyclohexane, $12.02 \mathrm{mmol}, 1.2$ equiv) dropwise. After 5 h , the solution was cannulated into 3,4-di isopropoxy-3-cyclobutene-1,2-dione ($2.376 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.2$ equiv) in dry THF (50 mL) at $-78^{\circ} \mathrm{C}$. After 2 h , the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, allowed to warm, and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to a brown oil. From this crude oil, the unreacted dihydropyridine was removed by chromatography (Baeckström column, silica gel, $3.5 \mathrm{~cm} \times 15 \mathrm{~cm}, 5 \%$ EtOAc/hexanes, $R_{f}=0.24 ; 0.56$ $\mathrm{g}, 16 \%)$. The remainder of the chromatographed material was degassed (six cycles, nitrogen-vacuum-nitrogen) and then thermolyzed neat at $160-165^{\circ} \mathrm{C}$ for 45 min . Chromatographic purification (Baeckström column, silica gel, $3.5 \mathrm{~cm} \times 15 \mathrm{~cm}$, 10% EtOAc/hexanes) gave a white solid that was recrystallized from methanol ($3.128 \mathrm{~g}, 6.6 \mathrm{mmol}, 66 \%$): $\mathrm{mp} 169-170^{\circ} \mathrm{C}$; TLC (silica gel, 20% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.42$); IR $\left(\mathrm{CHCl}_{3}, \mathrm{KCl}\right.$, cm^{-1}) 3508 (br, w), 3025 (w), 2979 (m), 1775 (s), 1384 (m), 1106 (m), $1020(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.30(\mathrm{~m}, 2 \mathrm{H})$, $7.16(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{dd}, \mathrm{J}=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.94(\mathrm{~s}, 2 \mathrm{H}), 5.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.97(\mathrm{dd}, \mathrm{J}=8.1,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.94 (sept, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71$ (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.50 (sept, J $=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.12(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.38$ (app t, J $=6.1 \mathrm{~Hz}, 6 \mathrm{H}$), $1.23\left(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 6 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 150.5$ (s), 145.0 (s), 141.9 (s), 136.7 (s), 135.0 (s), 132.8 (s), 129.6 (d), 129.4 (d), 129.1 (s), 129.0 (d), 128.1 (s), 127.6 (d), 123.6 (s), 123.5 (s), 116.4 (d), 113.1 (d), 106.4 (d), 106.1 (d), 98.4 (s), 76.1 (d), 74.6 (d), 34.3 (d), 22.8 (q), 22.4 (q), 13.2 (q), 12.6 (q). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 70.87; H, 6.37; N, 5.90. Found: C, 70.75; H, 6.40; N, 5.89.

1,8-(Carbonyloxy)-6,7-diisopropoxy-4-(2-aminophenyl)-5-hydroxy-1,4-dihydroquinoline (14). A mixture of protected aniline $\mathbf{1 3}$ ($2.845 \mathrm{~g}, 6 \mathrm{mmol}, 1.0$ equiv), hydroxylamine hydrochloride ($8.339 \mathrm{~g}, 120 \mathrm{mmol}, 20.0$ equiv), triethylamine ($8.363 \mathrm{~mL}, 60 \mathrm{mmol}, 10.0$ equiv), and N -bromosuccinimide ($2.136 \mathrm{~g}, 12 \mathrm{mmol}, 2.0$ equiv) in EtOH (80 mL) and water (20 mL) was refluxed for 4 days. After this time, the dark solution was cool ed, quenched with 50 mL of water, and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried (MgSO_{4}), filtered, and concentrated. Purification of the residue by chromatography (Baeckström column, silica gel, $2 \mathrm{~cm} \times 12$ cm , from 20% to 50% EtOAc/hexanes) gave 0.853 g (30\%) of starting material and a brown solid that was recrystallized from hexane $/ \mathrm{E}_{2} \mathrm{O}$ ($1.354 \mathrm{~g}, 3.42 \mathrm{mmol}, 57 \%$): mp $111-113^{\circ} \mathrm{C}$; TLC (silica gel, 50% EtOAc/hexanes, $\left.\mathrm{R}_{\mathrm{f}}=0.45\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, $\mathrm{NaCl}, \mathrm{cm}^{-1}$) 3504 (br, w), 3395 (br, w), 3062 (w), 2981 (m), 2936 (w), 1779 (s), 1684 (m), 1616 (m), 1493 (m), 1481 (m), 1389 (s), 1107 (m), $1026(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$
7.03-7.09 (m, 2 H), 6.89 (dd, J $=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (br t, $\mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{br} \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 5.28 (dd, J = 8.1, 4.1 Hz, 1 H$), 5.02(\mathrm{dd}, \mathrm{J}=4.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.90 (sept, J $=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.45 (sept, J $=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (br s, 2 H), $1.37(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.24(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 150.6$ (s), 145.1 (s), 142.3 (s), 134.9 (s), 133.3 (s), 129.8 (d), 129.6 (s), 127.6 (d), 123.9 (s), 122.0 (s), 120.4 (d), 117.8 (d), 117.3 (d), 113.3 (d), 100.1 (s), 75.8 (d), 74.5 (d), 32.9 (d), 22.6 (q), 22.5 (q), 22.4 (q), 22.2 (q); HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$ 396.1685, found 396.1696. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 66.65; $\mathrm{H}, 6.10 ; \mathrm{N}, 7.07$. Found: $\mathrm{C}, 66.75$; H, 6.15; N, 7.05.

5,6-Diisopropoxypyrido[2,3,4-kI]acridin-4-one (15). A solution of dihydroquinoline 14 ($356 \mathrm{mg}, 0.9 \mathrm{mmol}, 1.0$ equiv) in ethanol (5 mL) was treated with tert-butyl hydroperoxide (1.0 mL , aqueous solution $70 \%, 10.43 \mathrm{mmol}, 11.59$ equiv) and potassium hydroxide ($112 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.22$ equiv) for 7 h . The reaction mixture was quenched with water (25 mL) and extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and condensed to a solid residue that was washed with cold $\mathrm{Et}_{2} \mathrm{O}$ and recrystallized from hot $\mathrm{Et}_{2} \mathrm{O}$ to give a bright yellow solid ($207 \mathrm{mg}, 0.59 \mathrm{mmol}$, 66%): mp 174-176 ${ }^{\circ} \mathrm{C}$; TLC (silica gel, 50% EtOAc/hexanes, $\mathrm{R}_{\mathrm{f}}=0.23$); IR $\left(\mathrm{CHCl}_{3}, \mathrm{NaCl}, \mathrm{cm}^{-1}\right) 2986(\mathrm{~m}), 2935(\mathrm{w}), 1659$ (s), 1607 (m), 1574 (m), 1383 (w), $1098(\mathrm{~s}), 1005(\mathrm{~s}) ;{ }^{1} \mathrm{H}^{2}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.19(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{br} \mathrm{d}, \mathrm{J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{br} \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{brt}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{brt}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.20 (sept, J $=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.88 (sept, J $=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.49 $(d, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 75.5 MHz) $\delta 181.2$ (s), 153.3 (s), 149.9 (d), 149.0 (s), 146.4 (s), 146.3 (s), 145.8 (s), 136.9 (s), 131.9 (d), 131.5 (d), 129.3 (d), 122.8 (d), 121.5 (s), 119.3 (d), 115.8 (s), 77.7 (d), 75.8 (d), 22.9 (q), 22.7 (q); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$ 349.1552, found 349.1562. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}$, 72.40; H, 5.79; N, 8.04. Found: C, 72.13; H, 5.88; N, 8.01.

Acknowledgment. This investigation was supported by Grant No. CA40157, awarded by the National Cancer Institute, DHHS. We acknowledge the use of a VG 70-S mass spectrometer purchased through funding from the National Institutes of Health, S10-RR-02478, and a 300 MHz NMR and 360 MHz NMR purchased through funding from the National Science F oundation, NSF CHE-85-16614 and NSF CHE-8206103, respectively.

Supporting Information Available: ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{5 d}-\mathbf{g}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{8 c}, \mathbf{e}-\mathbf{I}$ (20 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^6]
[^0]: * To whom correspondence should be addressed. Tel.: (404) 7276604. Fax: (404) 727-0845. E-mail: CHEMLL1@emory.edu.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, April 1, 1997.
 (1) Dr. I sidro Llorente thanks the Spanish Ministerio de Educación y Ciencia for support in the form of a postdoctoral fellowship.
 (2) Molinski, T. F. Chem. Rev. 1993, 93, 1825.
 (3) Schmitz, F. J .; Agarwal, S. K.; Gunasekera, S. P.; Schmidt, R. G.; Shoolery, J. N. J. Am. Chem. Soc. 1983, 105, 4835.
 (4) Szczepankiewicz, B. G.; Heathcock, C. H. J . Org. Chem. 1994, 59, 3512.
 (5) Bishop, M. J.; Ciufolini, M. A. J. Am. Chem. Soc. 1992, 114, 10081.
 (6) Ciufolini, M. A.; Byrne, N. E. J. Am. Chem. Soc. 1991, 113, 8016. (7) Moody, C. J.; Rees, C. W.; Thomas, R. Tetrahedron 1992, 48, 3589.
 (8) Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1988, 110, 4051.
 (9) Gellerman, G.; Rudi, A.; Kashman, Y. Tetrahedron Lett. 1992, 33, 5577.
 (10) Alli, N. M.; Chattopadhyay, S. K.; Mckillop, A.; M., P. R.; Ozturk, T.; Rebelo, R. A. J. Chem. Soc., Chem. Commun. 1992, 1453. (11) Gómez-Bengoa, E.; E chavarren, A. M. J . Org. Chem. 1991, 56, 3497.
 (12) Meghani, P.; Mills, O. S.; J oule, J. A. Heterocycles 1990, 30 , 1121.
 (13) Subramanyam, C.; Noguchi, M.; Weinreb, S. M. J . Org. Chem. 1989, 54, 5580.
 (14) Labarca, C. V.; Mackenzie, A. R.; Moody, C. J .; Rees, C. W.; Vaquero, J. J. J. Chem. Soc., Perkin Trans. 1 1987, 927.
 (15) K oo, S.; Liebeskind, L. S. J. Am. Chem. Soc. 1995, 117, 3389.
 (16) Turnbull, P.; Moore, H. W. J . Org. Chem. 1995, 60, 3274.
 (17) Turnbull, P.; M oore, H. W. J . Org. Chem. 1995, 60, 644.
 (18) Sun, L.; Liebeskind, L. S. J. Org. Chem. 1995, 60, 8194.
 (19) Gurski-Birchler, A.; Liu, F.; Liebeskind, L. S. J. Org. Chem. 1994, 59, 7737.
 (20) Edwards, J. P.; Krysan, D. J.; Liebeskind, L. S. J. Am. Chem. Soc. 1993, 115, 9868.
 (21) Lee, K. H.; Moore, H. W. Tetrahedron Lett. 1993, 34, 235.

[^1]: (22) Liebeskind, L. S.; Wang, J. Y. J . Org. Chem. 1993, 58, 3550.
 (23) Gurski, A.; Liebeskind, L. S. J. Am. Chem. Soc. 1993, 115, 6101.
 (24) Krysan, D. J.; Gurski, A.; Liebeskind, L. S. J. Am. Chem. Soc. 1992, 114, 1412.
 (25) Liebeskind, L. S.; Granberg, K. L.; Zhang, J J J Org. Chem. 1992, 57, 4345.
 (26) Moore, H. W.; Yerxa, B. R. Chemtracts-Org. Chem. 1992, 5, 273.
 (27) Liebeskind, L. S.; Zhang, J J J Org. Chem. 1991, 56, 6379.

[^2]: (28) Comins, D. L. Tetrahedron Lett. 1983, 24, 2807.
 (29) Schlosser, M.; Schneider, P. Angew. Chem., Int. Ed. Engl. 1979, 18, 489.
 (30) Davidson, B. S. Chem. Rev. 1993, 93, 1771.
 (31) Thomson, R. H. In Total Synthesis of Natural Products; Apsimon, J., Ed.; J ohn Wiley \& Sons, Inc.: New York, 1992; Vol. 8; p 311.
 (32) Thomson, R. H. Naturally Occurring Quinones III; Chapman and Hall: London, 1987; Vol. III.
 (33) Sausins, A.; Duburs, G. Heterocycles 1988, 27, 291.
 (34) Stout, D. M.; M eyers, A. I. Chem. Rev. 1982, 82, 223.
 (35) Yamaguchi, R.; Nakazono, Y.; Matsuki, T.; H ata, E.-i.; Kawanisi, M. Bull. Chem. Soc. J pn. 1987, 60, 215.
 (36) Yamaguchi, R.; Hata, E.-i.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1785.
 (37) Y amaguchi, R.; Otsuji, A.; Utimoto, K. J . Am. Chem. Soc. 1988, 110, 2186.
 (38) Piers, E.; Soucy, M. Can. J. Chem. 1974, 52, 3563.
 (39) Comins, D. L.; Ábdullah, A. H. J . Org. Chem. 1982, 47, 4315.
 (40) Sundberg, R. J .; Bloom, J. D. J. Org. Chem. 1981, 46, 4836.
 (41) F owler, F. W. J. Am. Chem. Soc. 1972, 94, 5926.

[^3]: (42) F owler, F. W. J. Org. Chem. 1972, 57, 1321.

[^4]: (43) Schmitz, F. J .; Deguzman, F. S.; H ossain, M. B.; Vanderhelm, D. J . Org. Chem. 1991, 56, 804.
 (44) Taraporewala, I. B.; Cessac, J. W.; Chanh, T. C.; Delgado, A. V.; Schinazi, R. F. J. Med. Chem. 1992, 35, 2744.
 (45) K obayashi, J .; Cheng, J.-f.; Wälchli, M. R.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Ohizumi, Y. J . Org. Chem. 1988, 53, 1800.
 (46) Gunawardana, G. P.; Koelm, F. E.; Lee, A. Y.; Clardy, J .; He, H. Y.; Faulkner, D. J. J. Org. Chem. 1992, 57, 1523.
 (47) Bruekelman, S. P.; Leach, S. E.; Meakins, G. D.; Tirel, M. D. J . Chem. Soc., Perkin Trans. 1 1984, 2801.

[^5]: (49) Purchased from Baeckström SEPARO AB, Larsbergsvägen 24, S-181 39 Lindingö, Sweden.
 (50) Liebeskind, L. S.; Fengl, R. W.; Wirtz, K. R.; Shawe, T. T. J . Org. Chem. 1988, 53, 2482.

[^6]: J O970039V

